CHAPTER SUMMARY

BIG IDEAS

For Your Notebook

Big Idea 🚺

Using Properties of Parallel and Perpendicular Lines

When parallel lines are cut by a transversal, angle pairs are formed. Perpendicular lines form congruent right angles.

 $\angle 2$ and $\angle 6$ are corresponding angles, and they are congruent.

 \angle 3 and \angle 6 are alternate interior angles, and they are congruent.

 $\angle 1$ and $\angle 8$ are alternate exterior angles, and they are congruent.

 \angle 3 and \angle 5 are consecutive interior angles, and they are supplementary.

If $a \perp b$, then $\angle 1$, $\angle 2$, $\angle 3$, and $\angle 4$ are all right angles.

Big Idea 💈

Proving Relationships Using Angle Measures

You can use the angle pairs formed by lines and a transversal to show that the lines are parallel. Also, if lines intersect to form a right angle, you know that the lines are perpendicular.

Through point A not on line q, there is only one line r parallel to q and one line s perpendicular to q.

Big Idea 🔞

Making Connections to Lines in Algebra

In Algebra 1, you studied slope as a rate of change and linear equations as a way of modeling situations.

Slope and equations of lines are also a useful way to represent the lines and segments that you study in Geometry. For example, the slopes of parallel lines are the same $(a \parallel b)$, and the product of the slopes of perpendicular lines is -1 $(a \perp c)$, and $b \perp c$.

3

CHAPTER REVIEW

@HomeTutor

classzone.com

- Multi-Language Glossary
- Vocabulary practice

REVIEW KEY VOCABULARY

For a list of postulates and theorems, see pp. 926–931.

- parallel lines, p. 147
- skew lines, p. 147
- parallel planes, p. 147
- transversal, p. 149
- corresponding angles, p. 149
- alternate interior angles, p. 149
- alternate exterior angles, p. 149

- consecutive interior angles, p. 149
- paragraph proof, p. 163
- slope, p. 171
- slope-intercept form, p. 180
- standard form, p. 182
- distance from a point to a line, p. 192

- 1. Copy and complete: Two lines that do not intersect and are not coplanar are called _?_.
- **2. WRITING** *Compare* alternate interior angle pairs and consecutive interior angle pairs.

Copy and complete the statement using the figure at the right.

4.
$$\angle 3$$
 and $\underline{?}$ are alternate interior angles.

5.
$$\angle 4$$
 and $\underline{?}$ are consecutive interior angles.

6.
$$\angle 7$$
 and $\underline{?}$ are alternate exterior angles.

Identify the form of the equation as slope-intercept form or standard form.

7.
$$14x - 2y = 26$$

8.
$$v = 7x - 13$$

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 3.

3.1 Identify Pairs of Lines and Angles

pp. 147-152

EXAMPLE

Think of each segment in the rectangular box at the right as part of a line.

a.
$$\overrightarrow{BD}$$
, \overrightarrow{AC} , \overrightarrow{BH} , and \overrightarrow{AG} appear perpendicular to \overrightarrow{AB} .

b.
$$\overrightarrow{CD}$$
, \overrightarrow{GH} , and \overrightarrow{EF} appear parallel to \overrightarrow{AB} .

c.
$$\overrightarrow{CF}$$
 and \overrightarrow{EG} appear skew to \overrightarrow{AB} .

EXAMPLE 1

on p. 147 for Exs. 9–12

EXERCISES

Think of each segment in the diagram of a rectangular box as part of a line. Which line(s) or plane(s) contain point N and appear to fit the description?

- **9.** Line(s) perpendicular to \overrightarrow{QR}
- 10. Line(s) parallel to \overrightarrow{QR}
- 11. Line(s) skew to \overrightarrow{QR}
- **12.** Plane(s) parallel to plane *LMQ*

Use Parallel Lines and Transversals

pp. 154–160

EXAMPLE

Use properties of parallel lines to find the value of x.

By the Vertical Angles Congruence Theorem, $m \angle 6 = 50^{\circ}$.

$$(x-5)^{\circ} + m \angle 6 = 180^{\circ}$$

Consecutive Interior Angles Theorem

$$(x-5)^{\circ} + 50^{\circ} = 180^{\circ}$$

Substitute 50° for $m \angle 6$.

$$x = 135$$

Solve for x.

EXERCISES

Find $m \angle 1$ and $m \angle 2$. Explain your reasoning.

13.

EXAMPLES

on pp. 154–155 for Exs. 13–19

1 and 2

14

15.

Find the values of x and y.

16.

17.

18.

19. FLAG OF PUERTO RICO Sketch the rectangular flag of Puerto Rico as shown at the right. Find the measure of $\angle 1$ if $m\angle 3 = 55^{\circ}$. *Justify* each step in your argument.

3

CHAPTER REVIEW

3.3 Prove Lines are Parallel

pp. 161-169

EXAMPLE

Find the value of x that makes $m \parallel n$.

Lines m and n are parallel when the marked corresponding angles are congruent.

$$(5x + 8)^{\circ} = 53^{\circ}$$

$$5x = 45$$

$$x = 9$$

▶ The lines m and n are parallel when x = 9.

EXERCISES

Find the value of x that makes $m \parallel n$.

20.

example 1 on p. 161 for Exs. 20–22

21

22.

3.4 Find and Use Slopes of Lines

рр. 171–178

EXAMPLE

Find the slope of each line. Which lines are parallel?

Slope of
$$\ell = \frac{-1-5}{-3-(-5)} = \frac{-6}{2} = -3$$

Slope of
$$\mathbf{m} = \frac{1-5}{0-(-1)} = \frac{-4}{1} = -4$$

Slope of
$$n = \frac{0-4}{4-3} = \frac{-4}{1} = -4$$

▶ Because m and n have the same slope, they are parallel. The slope of ℓ is different, so ℓ is not parallel to the other lines.

EXERCISES

EXAMPLES 2 and 3

on pp. 172–173 for Exs. 23–24 Tell whether the lines through the given points are *parallel*, *perpendicular*, or *neither*.

- **23.** Line 1: (8, 12), (7, -5) Line 2: (-9, 3), (8, 2)
- **24.** Line 1: (3, -4), (-1, 4)
 - Line 2: (2, 7), (5, 1)

3.5 Write and Graph Equations of Lines

рр. 180–187

EXAMPLE

Write an equation of the line k passing through the point (-4, 1) that is perpendicular to the line n with the equation y = 2x - 3.

First, find the slope of line k. Line n has a slope of 2. Then, use the given point and the slope in the slope-intercept form to find the *y*-intercept.

$$2 \cdot m = -1$$

$$m = -\frac{1}{2}$$

$$y = mx + b$$

$$1 = -\frac{1}{2}(-4) + b$$

$$-1 = b$$

▶ An equation of line k is $y = -\frac{1}{2}x - 1$.

EXERCISES

EXAMPLES 2 and 3on pp. 180–181
for Exs. 25–26

Write equations of the lines that pass through point P and are (a) parallel and (b) perpendicular to the line with the given equation.

25.
$$P(3, -1), y = 6x - 4$$

26.
$$P(-6, 5), 7y + 4x = 2$$

3.6 Prove Theorems About Perpendicular Lines

рр. 190–197

EXAMPLE

Find the distance between y = 2x + 3 and y = 2x + 8.

Find the length of a perpendicular segment from one line to the other. Both lines have a slope of 2, so the slope of a perpendicular segment to each line is $-\frac{1}{2}$.

The segment from (0, 3) to (-2, 4) has a slope of $\frac{4-3}{-2-0} = -\frac{1}{2}$. So, the distance between the lines is $d = \sqrt{(-2-0)^2 + (4-3)^2} = \sqrt{5} \approx 2.2$ units.

EXERCISES

EXAMPLE 4

on p. 193 for Exs. 27–28 Use the Distance Formula to find the distance between the two parallel lines. Round to the nearest tenth, if necessary.

